Part Number Hot Search : 
PCF2512X GRM31C 5MTCX NMV0512S C811C 5MTCX 0F345ES 001BT
Product Description
Full Text Search
 

To Download MCP1804 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 MCP1804
150 mA, 28V LDO Regulator With Shutdown
Features
* 150 mA Output Current * Low Drop Out Voltage, 260 mV typical @ 20 mA, VR = 3.3V * 50 A Typical Quiescent Current * 0.01 A Typical Shutdown Current * Input Operating Voltage Range: 2.0V to 28.0V * Standard Output Voltage Options (1.8V, 2.5V, 3.0V, 3.3V, 5.0V, 10.0V, 12.0V) * Output Voltage Accuracy: 2% * Output voltages from 1.8V to 18.0V in 0.1V increments are available upon request * Stable with Ceramic output capacitors * Current Limit Protection With Current Foldback * Shutdown pin * High PSRR: 50 dB typical @ 1 kHz
Description
The MCP1804 is a family of CMOS low dropout (LDO) voltage regulators that can deliver up to 150 mA of current while consuming only 50 A of quiescent current (typical, 1.8V VOUT 5.0V). The input operating range is specified from 2.0V to 28.0V. The MCP1804 is capable of delivering 100 mA with only 1300 mV (typical) of input to output voltage differential (VOUT = 3.3V). The output voltage tolerance of the MCP1804 at +25C is a maximum of 2%. Line regulation is 0.15% typical at +25C. The LDO input and output is stable with 0.1 F of input and output capacitance. Ceramic, tantalum or aluminum electrolytic capacitors can all be used for input and output. Overcurrent limit with current foldback to 40 mA (typical) provides short-circuit protection. A shutdown (SHDN) function allows the output to be enabled or disabled. When disabled, the MCP1804 draws only 0.01 A of current (typical). Package options include the SOT-23-5 (SOT-25), SOT89-3, SOT-89-5, and SOT-223-3.
Applications
* * * * * * Cordless Phones, Wireless Communications PDAs, Notebook and Netbook Computers Digital Cameras Microcontroller Power Car Audio and Navigation Systems Home Appliances
Package Types
SOT-23-5 VOUT 5 SHDN 4 VIN 5 SOT-89-5 NC 4
Related Literature
* AN765, "Using Microchip's Micropower LDOs", DS00765, Microchip Technology Inc., (c)2002 * AN766, "Pin-Compatible CMOS Upgrades to BiPolar LDOs", DS00766, Microchip Technology Inc., (c)2002 * AN792, "A Method to Determine How Much Power a SOT23 Can Dissipate in an Application", DS00792, Microchip Technology Inc., (c)2001
(Top View)
1 VIN
2 GND SOT-223
3 NC
1
2
3
VOUT GND SHDN SOT-89-3
(Top View)
(Top View)
1
2
3 VIN
1 VOUT
2 VSS
3 VIN
VOUT GND
(c) 2009 Microchip Technology Inc.
DS22200A-page 1
MCP1804
Functional Block Diagram
VIN
VOUT
*
Thermal Protection
SHDN Shutdown Control Voltage Reference + Current Limiter
Error Amplifier
*5-Pin Versions Only
GND
Typical Application Circuit
MCP1804 VIN 1 VIN VOUT SOT-25 2 12V Battery + CIN 1 F Ceramic 3 NC SHDN 4 GND 5 VOUT 5.0V @ 30 mA COUT 1 F Ceramic
DS22200A-page 2
(c) 2009 Microchip Technology Inc.
MCP1804
1.0 ELECTRICAL CHARACTERISTICS
Notice: Stresses above those listed under "Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operational listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.
Absolute Maximum Ratings
Input Voltage ...................................................... +30V Output Current (Continuous)........... PD/(VIN-VOUT)mA Output Current (Peak)...................................... 300 mA Output Voltage ..................... (VSS-0.3V) to (VIN+0.3V) SHDN Voltage ................................(VSS-0.3V) to +30V Continuous Power Dissipation: SOT-25......................................................... 250 mW SOT-89......................................................... 500 mW SOT-223....................................................... 300 mW
ELECTRICAL CHARACTERISTICS
Electrical Specifications: Unless otherwise specified, all limits are established for VIN = VR + 2.0V, Note 1, COUT = 1 F (X7R), CIN = 1 F (X7R), VSHDN = VIN, TA = +25C Parameters Input Operating Voltage Input Quiescent Current Sym VIN Iq -- -- -- Shutdown Current Maximum Output Current ISHDN IOUT_mA 100 150 Current Limiter Output Short Circuit Current Output Voltage Regulation VOUT Temperature Coefficient Line Regulation ILIMIT IOUT_SC VOUT TCVOUT VOUT/ (VOUTXVIN) -- -- VR-2.0% -- -- -- 200 40 VR 100 -- -- -- -- VR+2.0% -- mA mA mA mA V ppm/C IOUT = 10 mA, Note 2 IOUT = 20 mA, -40C TA +85C, Note 3 (VR + 2V) VIN 28V, Note 1 -- -- Note 1: 2: 3: 4: 0.05 0.15 0.10 0.30 %/V %/V IOUT = 5 mA IOUT = 13 mA -- 50 60 65 0.01 105 115 125 0.10 A A A A Min 2.0 Typ -- Max 28.0 Units V Note 1 IL = 0 mA 1.8V VOUT 5.0V 5.1V VOUT 12.0V 12.1V VOUT 18.0V SHDN = 0V VIN = VR + 3.0V VOUT < 3.0V VOUT 3.0V Conditions Input / Output Characteristics
5:
The minimum VIN must meet one condition: VIN (VR + 2.0V). VR is the nominal regulator output voltage with an input voltage of VIN = VR + 2.0V. For example: VR = 1.8V, 2.5V, 3.0V, 3.3V, etc. TCVOUT = (VOUT-HIGH - VOUT-LOW) *106 / (VR * Temperature), VOUT-HIGH = highest voltage measured over the temperature range. VOUT-LOW = lowest voltage measured over the temperature range. Load regulation is measured at a constant junction temperature using low duty cycle pulse testing. Changes in output voltage due to heating effects are determined using thermal regulation specification TCVOUT. Dropout voltage is defined as the input to output differential at which the output voltage drops 2% below its measured value with an applied input voltage of VR + 2.0V.
(c) 2009 Microchip Technology Inc.
DS22200A-page 3
MCP1804
ELECTRICAL CHARACTERISTICS (CONTINUED)
Electrical Specifications: Unless otherwise specified, all limits are established for VIN = VR + 2.0V, Note 1, COUT = 1 F (X7R), CIN = 1 F (X7R), VSHDN = VIN, TA = +25C Parameters Load Regulation Sym VOUT/VOUT -- -- -- Dropout Voltage Note 1, Note 5 VDROPOUT -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- SHDN "H" Voltage SHDN "H" Voltage SHDN Current Note 1: 2: 3: 4: VSHDN_H VSHDN_L ISHDN 1.1 0 -0.1 550 450 390 310 260 220 190 170 130 120 2200 1900 1700 1500 1300 1100 1000 800 700 650 -- -- -- 710 600 520 450 360 320 280 230 190 170 2700 2600 2200 1900 1700 1500 1300 1150 950 850 VIN 0.35 0.1 V V V V V V V V V V V V V V V V V V V V V V A 50 110 180 90 175 275 mV mV mV Min Typ Max Units Conditions IL = 1.0 mA to 50 mA, Note 4 1.8V VOUT 5.0V 5.1V VOUT 12.0V 12.1V VOUT 18.0V IL = 20 mA 1.8V VR 1.9V 2.0V VR 2.1V 2.2V VR 2.4V 2.5V VR 2.9V 3.0V VR 3.9V 4.0V VR 4.9V 5.0V VR 6.4V 6.5V VR 8.0V 8.1V VR 10.0V 10.1V VR 18.0V IL = 100 mA 1.8V VR 1.9V 2.0V VR 2.1V 2.2V VR 2.4V 2.5V VR 2.9V 3.0V VR 3.9V 4.0V VR 4.9V 5.0V VR 6.4V 6.5V VR 8.0V 8.1V VR 10.0V 10.1V VR 18.0V VIN = 28V VIN = 28V VIN = 28V, VSHDN = GND or VIN
5:
The minimum VIN must meet one condition: VIN (VR + 2.0V). VR is the nominal regulator output voltage with an input voltage of VIN = VR + 2.0V. For example: VR = 1.8V, 2.5V, 3.0V, 3.3V, etc. TCVOUT = (VOUT-HIGH - VOUT-LOW) *106 / (VR * Temperature), VOUT-HIGH = highest voltage measured over the temperature range. VOUT-LOW = lowest voltage measured over the temperature range. Load regulation is measured at a constant junction temperature using low duty cycle pulse testing. Changes in output voltage due to heating effects are determined using thermal regulation specification TCVOUT. Dropout voltage is defined as the input to output differential at which the output voltage drops 2% below its measured value with an applied input voltage of VR + 2.0V.
DS22200A-page 4
(c) 2009 Microchip Technology Inc.
MCP1804
ELECTRICAL CHARACTERISTICS (CONTINUED)
Electrical Specifications: Unless otherwise specified, all limits are established for VIN = VR + 2.0V, Note 1, COUT = 1 F (X7R), CIN = 1 F (X7R), VSHDN = VIN, TA = +25C Parameters Power Supply Ripple Rejection Ratio Thermal Shutdown Protection Thermal Shutdown Hysteresis Note 1: 2: 3: 4: Sym PSRR TSD TSD Min -- -- -- Typ 50 150 25 Max -- -- -- Units dB C C Conditions f = 1 kHz, IL = 20 mA, VINAC = 0.5V pk-pk, CIN = 0 F TJ
5:
The minimum VIN must meet one condition: VIN (VR + 2.0V). VR is the nominal regulator output voltage with an input voltage of VIN = VR + 2.0V. For example: VR = 1.8V, 2.5V, 3.0V, 3.3V, etc. TCVOUT = (VOUT-HIGH - VOUT-LOW) *106 / (VR * Temperature), VOUT-HIGH = highest voltage measured over the temperature range. VOUT-LOW = lowest voltage measured over the temperature range. Load regulation is measured at a constant junction temperature using low duty cycle pulse testing. Changes in output voltage due to heating effects are determined using thermal regulation specification TCVOUT. Dropout voltage is defined as the input to output differential at which the output voltage drops 2% below its measured value with an applied input voltage of VR + 2.0V.
TEMPERATURE SPECIFICATIONS
Parameters Temperature Ranges Operating Temperature Range Storage Temperature Range Thermal Package Resistance Thermal Resistance, SOT-25 Thermal Resistance, SOT-89 Thermal Resistance, SOT-223 JA JC JA JC JA JC -- -- -- -- -- -- 256 81 180 100 62 15 -- -- -- -- -- -- C/W C/W C/W EIA/JEDEC JESD51-7 FR-4 0.063 4-Layer Board EIA/JEDEC JESD51-7 FR-4 0.063 4-Layer Board EIA/JEDEC JESD51-7 FR-4 0.063 4-Layer Board TA Tstg -40 -55 +85 +125 C C Sym Min Typ Max Units Conditions
(c) 2009 Microchip Technology Inc.
DS22200A-page 5
MCP1804
NOTES:
DS22200A-page 6
(c) 2009 Microchip Technology Inc.
MCP1804
2.0
Note:
TYPICAL PERFORMANCE CURVES
The graphs and tables provided following this note are a statistical summary based on a limited number of samples and are provided for informational purposes only. The performance characteristics listed herein are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified operating range (e.g., outside specified power supply range) and therefore outside the warranted range.
Note: Unless otherwise indicated: COUT = 1 F Ceramic (X7R), CIN = 1 F Ceramic (X7R), TA = +25C, VIN = VR + 2.0V.
2.0 1.8 1.6 1.4 1.2 1.0 0.8 0.6 0.4 0.2 0.0 0 50 100 150
VIN=SHDN=4.8V
Output Voltage (V)
Output Voltage (V)
VR=2.8V
Ta=-40 Ta=25 Ta=85
2.0 1.8 1.6 1.4 1.2 1.0 0.8 0.6 0.4 0.2 0.0 0 50 100 150 200 Output Current (mA)
VR=1.8V
VIN=2.8V VIN=3.8V VIN=4.8V
200
250
300
250
300
Output Current (mA)
FIGURE 2-1: Current.
6.0 Output Voltage (V) 5.0 4.0 3.0 2.0 1.0 0.0 0 50
Output Voltage vs. Output
FIGURE 2-4: Current.
6.0
Output Voltage vs. Output
VIN=SHDN=8.0V
VR=5V
VR=5.0V
Output Voltage (V)
5.0 4.0 3.0 2.0 1.0 0.0
VIN=6V VIN=7V VIN=8V
Ta=-40 Ta=25 Ta=85
100
150
200
250
300
0
50
100
150
200
250
300
Output Current (mA)
Output Current (mA)
FIGURE 2-2: Current.
14.0 Output Voltage (V) 12.0 10.0 8.0 6.0 4.0 2.0 0.0 0 50
Output Voltage vs. Output
FIGURE 2-5: Current.
14.0
Output Voltage vs. Output
VIN=SHDN=15V
VR=12V
VR=12V
Output Voltage (V)
12.0 10.0 8.0 6.0 4.0 2.0 0.0
VIN=13V VIN=14V VIN=15V
Ta=-40 Ta=25 Ta=85
100
150
200
250
300
0
50
100
150
200
250
300
Output Current (mA)
Output Current (mA)
FIGURE 2-3: Current.
Output Voltage vs. Output
FIGURE 2-6: Current.
Output Voltage vs. Output
(c) 2009 Microchip Technology Inc.
DS22200A-page 7
MCP1804
Note: Unless otherwise indicated: COUT = 1 F Ceramic (X7R), CIN = 1 F Ceramic (X7R), TA = +25C, VIN = VR + 2.0V.
2.1
VR=1.8V
2.1
VR=1.8V IOUT=1mA IOUT=10mA IOUT=30mA
Output Voltage (V)
1.9 1.8 1.7 1.6 1.5 0.8
Output Voltage (V)
2.0
2.0 1.9 1.8 1.7 1.6 1.5
IOUT=1mA IOUT=10mA IOUT=30mA
1.3
1.8
2.3
2.8
3.3
3.8
4
8
12
16
20
24
28
Input Voltage (V)
Input Voltage (V)
FIGURE 2-7: Voltage.
6.0 5.8 5.6 5.4 5.2 5.0 4.8 4.6 4.4 4.2 4.0 4.0
Output Voltage vs. Input
FIGURE 2-10: Voltage.
6.0 5.8 5.6 5.4 5.2 5.0 4.8 4.6 4.4 4.2 4.0 8 12
Output Voltage vs. Input
VR=5V IOUT=1mA IOUT=10mA IOUT=30mA
VR=5V
Output Voltage (V)
Output Voltage (V)
IOUT=1mA IOUT=10mA IOUT=30mA
4.5
5.0 Input Voltage (V)
5.5
6.0
16
20
24
28
Input Voltage (V)
FIGURE 2-8: Voltage.
15.0
Output Voltage vs. Input
FIGURE 2-11: Voltage.
15.0
Output Voltage vs. Input
VR=12V
VR=12V
Output Voltage (V)
Output Voltage (V)
14.0 13.0 12.0 11.0 10.0 9.0 10 11 12 Input Voltage (V) 13 14
IOUT=1mA IOUT=10mA IOUT=30mA
14.0 13.0 12.0 11.0 10.0 9.0 14 16 18 20 22 24 26 28 Input Voltage (V)
IOUT=1mA IOUT=10mA IOUT=30mA
FIGURE 2-9: Voltage.
Output Voltage vs. Input
FIGURE 2-12: Voltage.
Output Voltage vs. Input
DS22200A-page 8
(c) 2009 Microchip Technology Inc.
MCP1804
Note: Unless otherwise indicated: COUT = 1 F Ceramic (X7R), CIN = 1 F Ceramic (X7R), TA = +25C, VIN = VR + 2.0V.
4.0 Dropout Voltage (V) 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 0 25 50 75 100 125 150 Output Current (mA)
Ta=85 Ta=25 Ta=-40
VR=1.8V
70
VR=1.8V
Supply Current (A)
60 50 40 30 20 10 0 0 4 8 12 16 20 24 28 Input Voltage (V)
Ta=85 Ta=25 Ta=-40
FIGURE 2-13: Current.
4.0 3.5 Dropout Voltage (V) 3.0 2.5 2.0 1.5 1.0 0.5 0.0 0 25
Ta=85 Ta=25 Ta=-40
Dropout Voltage vs. Load
FIGURE 2-16: Voltage.
70
Supply Current vs. Input
VR=5V
VR=5V
Supply Current (A)
60 50 40 30 20 10 0
Ta=85 Ta=25 Ta=-40
50
75
100
125
150
0
4
8
12
16
20
24
28
Output Current (mA)
Input Voltage (V)
FIGURE 2-14: Current.
4.0 Dropout Voltage (V) 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 0 25
Ta=85 Ta=25 Ta=-40
Dropout Voltage vs. Load
FIGURE 2-17: Voltage.
70
Supply Current vs. Input
VR=12V
VR=12V
Supply Current (A)
60 50 40 30 20 10 0
Ta=85 Ta=25 Ta=-40
50
75
100
125
150
0
4
8
12
16
20
24
28
Output Current (mA)
Input Voltage (V)
FIGURE 2-15: Current.
Dropout Voltage vs. Load
FIGURE 2-18: Voltage.
Supply Current vs. Input
(c) 2009 Microchip Technology Inc.
DS22200A-page 9
MCP1804
Note: Unless otherwise indicated: COUT = 1 F Ceramic (X7R), CIN = 1 F Ceramic (X7R), TA = +25C, VIN = VR + 2.0V.
70
VR=1.8V
2.00 1.95 Output Voltage (V) 1.90 1.85 1.80 1.75 1.70 1.65 1.60 -40 -20 0 20 40 60 80 100 -50 -25 0 25 50
IOUT=1mA IOUT=10mA IOUT=20mA
VR=1.8V
Supply Current (A)
60 50 40 30 20 10 0 Ambient Temperature (C)
75
100
Ambient Temperature (C
FIGURE 2-19: Voltage.
70 Supply Current (A) 60 50 40 30 20 10 0 -40 -20 0
Supply Current vs. Input
FIGURE 2-22: Temperature.
5.20
Output Voltage vs. Ambient
VR=5V
VR=5V
5.15 Output Voltage (V) 5.10 5.05 5.00 4.95 4.90 4.85 4.80
IOUT=1mA IOUT=10mA IOUT=20mA
20
40
60
80
100
-50
Ambient Temperature (C)
-25 0 25 50 75 Ambient Temperature (C
100
FIGURE 2-20: Voltage.
70
Supply Current vs. Input
FIGURE 2-23: Temperature.
12.5 12.4 12.3 12.2 12.1 12.0 11.9 11.8 11.7 11.6 11.5 -50 -25
Output Voltage vs. Ambient
VR=12V
Supply Current (A)
60 50 40 30 20 10 0 -40 -20 0 20 40 60 80 100 Ambient Temperature (C) Output Voltage (V)
VR=12V
IOUT=1mA IOUT=10mA IOUT=20mA
0
25
50
75
100
Ambient Temperature (C
FIGURE 2-21: Voltage.
Supply Current vs. Input
FIGURE 2-24: Temperature.
Output Voltage vs. Ambient
DS22200A-page 10
(c) 2009 Microchip Technology Inc.
MCP1804
Note: Unless otherwise indicated: COUT = 1 F Ceramic (X7R), CIN = 1 F Ceramic (X7R), TA = +25C, VIN = VR + 2.0V.
7.3 6.3 Input Voltage (V) 5.3 4.3
VOUT VR=3.3V IOUT=1 mA
3.38 3.36 Output Voltage (V) Input Voltage (V) 3.34 3.32 3.30 3.28 3.26 Time (1ms/div)
7.3
VIN
5.3 4.3
VOUT
3.34 3.32 3.30 3.28 3.26 Time (1ms/div)
3.3 2.3 1.3
3.3 2.3 1.3
FIGURE 2-25:
9 8 Input Voltage (V) 7 6
Dynamic Line Response.
5.08
VR=5V IOUT 1 mA VIN
FIGURE 2-28:
9
Dynamic Line Response.
5.08 5.06 5.04 5.02
VOUT
VIN
5.06 Output Voltage (V) Input Voltage (V) 5.04 5.02
8 7 6 5 4 3 Time (1ms/div)
VR=5V IOUT=30 mA
VOUT
5 4 3 Time (1ms/div)
5.00 4.98 4.96
5.00 4.98 4.96
FIGURE 2-26:
16 15 Input Voltage (V) 14 13
Dynamic Line Response.
VR=12V IOUT=1 mA
FIGURE 2-29:
16
Dynamic Line Response.
12.08 12.06 12.04 12.02
VOUT
12.08 12.06 Output Voltage (V) Input Voltage (V) 12.04 12.02
VIN
VIN
15 14 13 12 11 10 Time (1ms/div)
VR=12V IOUT=30 mA
VOUT
12 11 10 Time (1ms/div)
12.00 11.98 11.96
12.00 11.98 11.96
FIGURE 2-27:
Dynamic Line Response.
FIGURE 2-30:
Dynamic Line Response.
(c) 2009 Microchip Technology Inc.
DS22200A-page 11
Output Voltage (V)
Output Voltage (V)
Output Voltage (V)
VIN
6.3
VR=3.3V IOUT =30 mA
3.38 3.36
MCP1804
Note: Unless otherwise indicated: COUT = 1 F Ceramic (X7R), CIN = 1 F Ceramic (X7R), TA = +25C, VIN = VR + 2.0V.
3.6 3.5 Output Voltage (V) 3.4 3.3 3.2 3.1 3.0 2.9 2.8 2.7 2.6 Time (1ms/div) 0
Output Current VOUT VR=3.3V
150 Output Current (mA) 120 90 60 30
8 6 Input Voltage (V) 4 2 0 -2 -4 -6 -8 Time (1ms/div)
VR=3.3V IOUT=1 mA VOUT VIN
8 7 6 5 4 3 2 1 0 Output Voltage (V) Output Voltage (V) Output Voltage (V)
FIGURE 2-31:
5.4 5.3 Output Voltage (V) 5.2 5.1 5.0 4.9 4.8 4.7 4.6 4.5 4.4
Dynamic Load Response.
150 Output Current (mA) 120
VOUT
FIGURE 2-34:
8 6 Input Voltage (V) 4 2 0 -2 -4 -6
Startup Response.
8
VIN
VR = 5V
7 6 5
90 60
Output Current
VOUT
4 3 2
VR=3.3V IOUT=30 mA
30 0 Time (1ms/div)
1 0
-8 Time (1ms/div)
FIGURE 2-32:
12.6 12.4 Output Voltage (V) 12.2 12.0 11.8 11.6 11.4 11.2 11.0 10.8 10.6
Dynamic Load Response.
150 Output Current (mA) 120
VOUT
FIGURE 2-35:
8 6 Input Voltage (V) 4 2 0 -2 -4 -6
Startup Response.
8
VIN
VR = 12V
7 6 5
90 60
IOUT
VOUT
4 3 2
VR=5.0V IOUT=1 mA
30 0 Time (1ms/div)
1 0
-8 Time (1ms/div)
FIGURE 2-33:
Dynamic Load Response.
FIGURE 2-36:
Startup Response.
DS22200A-page 12
(c) 2009 Microchip Technology Inc.
MCP1804
Note: Unless otherwise indicated: COUT = 1 F Ceramic (X7R), CIN = 1 F Ceramic (X7R), TA = +25C, VIN = VR + 2.0V.
8 6 Input Voltage (V) 4 2 0 -2 -4 -6 -8 Time (1ms/div)
VR=5.0V IOUT=30 mA VOUT VIN
8 7 SHDN Voltage (V) 6 5 4 3 2 1 0 Output Voltage (V)
8 6 4 2 0 -2 -4 -6 -8 Time (1ms/div)
VR=3.3V IOUT=1 mA VOUT SHDN
8 7 6 VOUT (V) VOUT (V) VOUT (V) 5 4 3 2 1 0
FIGURE 2-37:
15 10 Input Voltage (V) 5
Startup Response.
18
VIN
FIGURE 2-40:
8 6 Output Voltage (V) SHDN Voltage (V) 4 2 0 -2 -4 -6 -8
SHDN Response.
8
SHDN
15 12
7 6 5
VOUT
0 -5 -10 -15 Time (1ms/div)
VR=12V IOUT=1 mA
9 6 3 0
VOUT
4 3 2
VR=5V IOUT=1 mA
1 0
Time (1ms/div)
FIGURE 2-38:
15 10 Input Voltage (V) 5
Startup Response.
18
VIN
FIGURE 2-41:
15 10 Output Voltage (V) SHDN Voltage (V) 5
SHDN Response.
18
SHDN
15 12
15 12
VOUT
VOUT
0 -5 -10 -15 Time (1ms/div)
VR=12V IOUT=30 mA
9 6 3 0
0 -5 -10 -15 Time (1ms/div)
VR=12V IOUT=1 mA
9 6 3 0
FIGURE 2-39:
Startup Response.
FIGURE 2-42:
SHDN Response.
(c) 2009 Microchip Technology Inc.
DS22200A-page 13
MCP1804
Note: Unless otherwise indicated: COUT = 1 F Ceramic (X7R), CIN = 1 F Ceramic (X7R), TA = +25C, VIN = VR + 2.0V.
Ripple Rejection Rate: PSRR (dB) 8 6 SHDN Voltage (V) 4 2 0 -2 -4 -6 -8 Time (1ms/div)
VR=3.3V IOUT=30 mA VOUT SHDN
8 7 6 VOUT (V) 5 4 3 2 1 0
90 80 70 60 50 40 30 20 10 0 0.01 0.1 1
VOUT=3.3V CIN=0 IOUT=1 mA VIN_AC=0.5Vp-p
10
100
Ripple Frequency: f (kHz)
FIGURE 2-43:
8 6 SHDN Voltage (V) 4 2 0 -2 -4 -6 -8
SHDN Response.
8
SHDN
FIGURE 2-46:
Ripple Rejection Rate: PSRR (dB) 90 80 70 60 50 40 30 20 10 0 0.01 0.1
PSRR 3.3V @ 1 mA.
7 6
VOUT=5V CIN=0 IOUT=1 mA VIN_AC=0.5Vp-p
VOUT
4 3 2
VR=5V IOUT=30 mA
1 0
VOUT (V)
5
1
10
100
Time (1ms/div)
Ripple Frequency: f (kHz)
FIGURE 2-44:
15
SHDN Response.
18
SHDN
FIGURE 2-47:
Ripple Rejection Rate: PSRR (dB) 90 80 70 60 50 40 30 20 10 0 0.01 0.1
PSRR 5.0V @ 1 mA.
SHDN Voltage (V)
10 5
VOUT
15 VOUT (V) 12 9 6
VR=12V IOUT=30 mA
VOUT=12V CIN=0 IOUT=1 mA VIN_AC=0.5Vp-p
0 -5 -10 -15 Time (1ms/div)
3 0
1
10
100
Ripple Frequency: f (kHz)
FIGURE 2-45:
SHDN Response.
FIGURE 2-48:
PSRR 12.0V @ 1 mA.
DS22200A-page 14
(c) 2009 Microchip Technology Inc.
MCP1804
Note: Unless otherwise indicated: COUT = 1 F Ceramic (X7R), CIN = 1 F Ceramic (X7R), TA = +25C, VIN = VR + 2.0V.
Ripple Rejection Rate: PSRR (dB) Ripple Rejection Rate: PSRR (dB) 90 80 70 60 50 40 30 20 10 0 0.01 0.1 1 10 100
VOUT=3.3V CIN=0 IOUT=30 mA VIN_AC=0.5Vp-p
90 80 70 60 50 40 30 20 10 0 0.01 0.1 1 10 100
VOUT=12V CIN=0 IOUT=30 mA VIN_AC=0.5Vp-p
Ripple Frequency: f (kHz)
Ripple Frequency: f (kHz)
FIGURE 2-49:
Ripple Rejection Rate: PSRR (dB) 90 80 70 60 50 40 30 20 10 0 0.01 0.1
PSRR 3.3V @ 30 mA.
FIGURE 2-51:
PSRR 12.0V @ 30 mA.
VOUT=5V CIN=0 IOUT=30 mA VIN_AC=0.5Vp-p
1
10
100
Ripple Frequency: f (kHz)
FIGURE 2-50:
PSRR 5.0V @ 30 mA.
(c) 2009 Microchip Technology Inc.
DS22200A-page 15
MCP1804
NOTES:
DS22200A-page 16
(c) 2009 Microchip Technology Inc.
MCP1804
3.0 PIN DESCRIPTIONS
The descriptions of the pins are listed in Table 3-1.
TABLE 3-1:
MCP1804 PIN FUNCTION TABLE
MCP1804 Symbol Description
SOT-25 1 2 3 4 5
SOT-89-5 5 2,TAB 4 3 1
SOT-223-3, SOT89-3 3 2, TAB
-- --
VIN GND NC SHDN VOUT
Unregulated Supply Voltage Ground Terminal No connection Shutdown Regulated Voltage Output
1
3.1
Unregulated Input Voltage (VIN)
3.3
Shutdown Input (SHDN)
Connect VIN to the input unregulated source voltage. Like all low dropout linear regulators, low source impedance is necessary for the stable operation of the LDO. The amount of capacitance required to ensure low source impedance will depend on the proximity of the input source capacitors or battery type. For most applications, 0.1 F to 1.0 F of capacitance will ensure stable operation of the LDO circuit. The type of capacitor used can be ceramic, tantalum or aluminum electrolytic. The low ESR characteristics of the ceramic will yield better noise and PSRR performance at high-frequency.
The SHDN input is used to turn the LDO output voltage on and off. When the SHDN input is at a logic-high level, the LDO output voltage is enabled. When the SHDN input is pulled to a logic-low level, the LDO output voltage is disabled and the LDO enters a low quiescent current shutdown state where the typical quiescent current is 0.01 A. The SHDN pin does not have an internal pullup or pulldown resistor. The SHDN pin must be connected to either VIN or GND to prevent the device from becoming unstable.
3.4
Regulated Output Voltage (VOUT)
3.2
Ground Terminal (GND)
Regulator ground. Tie GND to the negative side of the output and the negative side of the input capacitor. Only the LDO bias current (50 to 60 A typical) flows out of this pin; there is no high current. The LDO output regulation is referenced to this pin. Minimize voltage drops between this pin and the negative side of the load.
Connect VOUT to the positive side of the load and the positive terminal of the output capacitor. The positive side of the output capacitor should be physically located as close to the LDO VOUT pin as is practical. The current flowing out of this pin is equal to the DC load current. For most applications, 0.1 F to 1.0 F of capacitance will ensure stable operation of the LDO circuit. Larger values may be used to improve dynamic load response. The type of capacitor used can be ceramic, tantalum or aluminum electrolytic. The low ESR characteristics of the ceramic will yield better noise and PSRR performance at high-frequency.
(c) 2009 Microchip Technology Inc.
DS22200A-page 17
MCP1804
NOTES:
DS22200A-page 18
(c) 2009 Microchip Technology Inc.
MCP1804
4.0
4.1
DETAILED DESCRIPTION
Output Regulation
4.4
Output Capacitor
A portion of the LDO output voltage is fed back to the internal error amplifier and compared with the precision internal bandgap reference. The error amplifier output will adjust the amount of current that flows through the P-Channel pass transistor, thus regulating the output voltage to the desired value. Any changes in input voltage or output current will cause the error amplifier to respond and adjust the output voltage to the target voltage (refer to Figure 4-1).
The MCP1804 requires a minimum output capacitance of 0.1 F to 1.0 F for output voltage stability. Ceramic capacitors are recommended because of their size, cost and environmental robustness qualities. Aluminum-electrolytic and tantalum capacitors can be used on the LDO output as well. The output capacitor should be located as close to the LDO output as is practical. Ceramic materials X7R and X5R have low temperature coefficients. Larger LDO output capacitors can be used with the MCP1804 to improve dynamic performance and power supply ripple rejection performance. Aluminumelectrolytic capacitors are not recommended for low temperature applications of < -25C.
4.2
Overcurrent
The MCP1804 internal circuitry monitors the amount of current flowing through the P-Channel pass transistor. In the event that the load current reaches the current limiter level of 200 mA (typical), the current limiter circuit will operate and the output voltage will drop. As the output voltage drops, the internal current foldback circuit will further reduce the output voltage causing the output current to decrease. When the output is shorted, a typical output current of 50 mA flows.
4.5
Input Capacitor
4.3
Shutdown
Low input source impedance is necessary for the LDO output to operate properly. When operating from batteries, or in applications with long lead length (> 10 inches) between the input source and the LDO, some input capacitance is recommended. A minimum of 0.1 F to 1.0 F is recommended for most applications. For applications that have output step load requirements, the input capacitance of the LDO is very important. The input capacitance provides the LDO with a good local low-impedance source to pull the transient currents from in order to respond quickly to the output load step. For good step response performance, the input capacitor should be of equivalent or higher value than the output capacitor. The capacitor should be placed as close to the input of the LDO as is practical. Larger input capacitors will also help reduce any high-frequency noise on the input and output of the LDO and reduce the effects of any inductance that exists between the input source voltage and the input capacitance of the LDO.
The SHDN input is used to turn the LDO output voltage on and off. When the SHDN input is at a logic-high level, the LDO output voltage is enabled. When the SHDN input is pulled to a logic-low level, the LDO output voltage is disabled and the LDO enters a low quiescent current shutdown state where the typical quiescent current is 0.01 A. The SHDN pin does not have an internal pullup or pulldown resistor. Therefore the SHDN pin must be pulled either high or low to prevent the device from becoming unstable. The internal device current will increase when the device is operational and current flows through the pullup or pull-down resistor to the SHDN pin internal logic. The SHDN pin internal logic is equivalent to an inverter input.
4.6
Thermal Shutdown
The MCP1804 thermal shutdown circuitry protects the device when the internal junction temperature reaches the typical thermal limit value of +150C. The thermal limit shuts off the output drive transistor. Device output will resume when the internal junction temperature falls below the thermal limit value by an amount equal to the thermal limit hysteresis value of +25C.
(c) 2009 Microchip Technology Inc.
DS22200A-page 19
MCP1804
VIN
VOUT
*
Thermal Protection
SHDN Shutdown Control Voltage Reference + Current Limiter
Error Amplifier
*
5-Pin Versions Only
GND
FIGURE 4-1:
Block Diagram.
DS22200A-page 20
(c) 2009 Microchip Technology Inc.
MCP1804
5.0 FUNCTIONAL DESCRIPTION
5.2 Output
The MCP1804 CMOS linear regulator is intended for applications that need the low current consumption while maintaining output voltage regulation. The operating continuous load range of the MCP1804 is from 0 mA to 150 mA. The input operating voltage range is from 2.0V to 28.0V, making it capable of operating from a single 12V battery or single and multiple Li-Ion cell batteries. The maximum rated continuous output current for the MCP1804 is 150 mA. A minimum output capacitance of 0.1 F to 1.0 F is required for small signal stability in applications that have up to 150 mA output current capability. The capacitor type can be ceramic, tantalum or aluminum electrolytic.
5.1
Input
The input of the MCP1804 is connected to the source of the P-Channel PMOS pass transistor. As with all LDO circuits, a relatively low source impedance (< 10) is needed to prevent the input impedance from causing the LDO to become unstable. The size and type of the capacitor needed depends heavily on the input source type (battery, power supply) and the output current range of the application. For most applications a 0.1 F ceramic capacitor will be sufficient to ensure circuit stability. Larger values can be used to improve circuit AC performance.
(c) 2009 Microchip Technology Inc.
DS22200A-page 21
MCP1804
NOTES:
DS22200A-page 22
(c) 2009 Microchip Technology Inc.
MCP1804
6.0
6.1
APPLICATION CIRCUITS AND ISSUES
Typical Application
The MCP1804 is most commonly used as a voltage regulator. It's low quiescent current and wide input voltage make it ideal for Li-Ion and 12V battery-powered applications.
The maximum continuous operating temperature specified for the MCP1804 is +85C. To estimate the internal junction temperature of the MCP1804, the total internal power dissipation is multiplied by the thermal resistance from junction to ambient (RJA). The thermal resistance from junction to ambient for the SOT-25 pin package is estimated at 256C/W.
EQUATION 6-2:
T J ( MAX ) = P TOTAL x R JA + T AMAX Where:
SHDN
NC TJ(MAX) GND VIN = = = = Maximum continuous junction temperature. Total device power dissipation. Thermal resistance from junction to ambient. Maximum ambient temperature.
MCP1804
VOUT 1.8V IOUT 50 mA
VOUT
COUT 1 F Ceramic
VIN 4.2V CIN 1 F Ceramic
PTOTAL RqJA TAMAX
FIGURE 6-1: 6.1.1
Typical Application Circuit.
APPLICATION INPUT CONDITIONS
= SOT25 = 3.8V to 4.2V = 4.6V = 1.8V = 50 mA maximum
Package Type Input Voltage Range VIN maximum VOUT typical IOUT
The maximum power dissipation capability for a package can be calculated given the junctionto-ambient thermal resistance and the maximum ambient temperature for the application. The following equation can be used to determine the package maximum internal power dissipation.
EQUATION 6-3:
( T J ( MAX ) - T A ( MAX ) ) P D ( MAX ) = --------------------------------------------------R JA Where:
PD(MAX) TJ(MAX) TA(MAX) RqJA = = = = Maximum device power dissipation. Maximum continuous junction temperature. Maximum ambient temperature. Thermal resistance from junction to ambient.
6.2
6.2.1
Power Calculations
POWER DISSIPATION
The internal power dissipation of the MCP1804 is a function of input voltage, output voltage and output current. The power dissipation, as a result of the quiescent current draw, is so low, it is insignificant (50.0 A x VIN). The following equation can be used to calculate the internal power dissipation of the LDO.
EQUATION 6-4:
T J ( RISE ) = P D ( MAX ) x R JA Where:
TJ(RISE) PTOTAL RqJA = = = Rise in device junction temperature over the ambient temperature. Maximum device power dissipation. Thermal resistance from junction to ambient.
EQUATION 6-1:
P LDO = ( V IN ( MAX ) ) - V OUT ( MIN ) ) x I OUT ( MAX ) ) Where:
PLDO = LDO Pass device internal power dissipation VIN(MAX) = Maximum input voltage VOUT(MIN) = LDO minimum output voltage
EQUATION 6-5:
T J = T J ( RISE ) + T A Where:
TJ TJ(RISE) TA = = = Junction Temperature. Rise in device junction temperature over the ambient temperature. Ambient temperature.
(c) 2009 Microchip Technology Inc.
DS22200A-page 23
MCP1804
6.3 Voltage Regulator
6.3.1.2 Junction Temperature Estimate
Internal power dissipation, junction temperature rise, junction temperature and maximum power dissipation are calculated in the following example. The power dissipation, as a result of ground current, is small enough to be neglected. To estimate the internal junction temperature, the calculated temperature rise is added to the ambient or offset temperature. For this example, the worst-case junction temperature is estimated below. TJ = TJRISE + TA(MAX) TJ = 76.3C Maximum Package Power Dissipation at +25C Ambient Temperature (minimum PCB footprint) SOT-25 (256C/Watt = RJA): PD(MAX) = (85C - 25C) / 256C/W PD(MAX) = 234 milli-Watts SOT-89 (180C/Watt = RJA): PD(MAX) = (85C - 25C) / 180C/W PD(MAX) = 333 milli-Watts
6.3.1
Package:
POWER DISSIPATION EXAMPLE
Package Type = SOT-25 Input Voltage: VIN = 3.8V to 4.6V LDO Output Voltages and Currents: VOUT = 1.8V IOUT = 50 mA Maximum Ambient Temperature: TA(MAX) = +40C Internal Power Dissipation: Internal Power dissipation is the product of the LDO output current times the voltage across the LDO (VIN to VOUT). PLDO(MAX) = (VIN(MAX) - VOUT(MIN)) x IOUT(MAX) PLDO = (4.6V - (0.98 x 1.8V)) x 50 mA PLDO = 141.8 milli-Watts
6.4
Voltage Reference
6.3.1.1
Device Junction Temperature Rise
The internal junction temperature rise is a function of internal power dissipation and the thermal resistance from junction to ambient for the application. The thermal resistance from junction to ambient (RJA) is derived from an EIA/JEDEC standard for measuring thermal resistance for small surface mount packages. The EIA/ JEDEC specification is JESD51-7, "High Effective Thermal Conductivity Test Board for Leaded Surface Mount Packages". The standard describes the test method and board specifications for measuring the thermal resistance from junction to ambient. The actual thermal resistance for a particular application can vary depending on many factors, such as copper area and thickness. Refer to AN792, "A Method to Determine How Much Power a SOT23 Can Dissipate in an Application" (DS00792), for more information regarding this subject. TJ(RISE) = PTOTAL x RqJA TJRISE = 141.8 milli-Watts x 256.0C/Watt TJRISE = 36.3C
The MCP1804 can be used not only as a regulator, but also as a low quiescent current voltage reference. In many microcontroller applications, the initial accuracy of the reference can be calibrated using production test equipment or by using a ratio measurement. When the initial accuracy is calibrated, the thermal stability and line regulation tolerance are the only errors introduced by the MCP1804 LDO. The low cost, low quiescent current and small ceramic output capacitor are all advantages when using the MCP1804 as a voltage reference.
Ratio Metric Reference
MCP1804
50 A Bias
PICmicro(R) Microcontroller COUT 1 F VREF ADO AD1
CIN 1 F
VIN VOUT GND
Bridge Sensor
FIGURE 6-2: voltage reference.
Using the MCP1804 as a
DS22200A-page 24
(c) 2009 Microchip Technology Inc.
MCP1804
6.5 Pulsed Load Applications
For some applications, there are pulsed load current events that may exceed the specified 150 mA maximum specification of the MCP1804. The internal current limit of the MCP1804 will prevent high peak load demands from causing non-recoverable damage. The 150 mA rating is a maximum average continuous rating. As long as the average current does not exceed 150 mA nor the max power dissipation of the packaged device, pulsed higher load currents can be applied to the MCP1804. The typical current limit for the MCP1804 is 200 mA (TA = +25C).
(c) 2009 Microchip Technology Inc.
DS22200A-page 25
MCP1804
NOTES:
DS22200A-page 26
(c) 2009 Microchip Technology Inc.
MCP1804
7.0
7.1
PACKAGING INFORMATION
Package Marking Information
5-Lead SOT-23
Part Number MCP1804T-1802I/OT MCP1804T-2502I/OT Code 80KNN 80TNN 80ZNN 812NN 81MNN 839NN 83ZNN
Example:
XXNN
MCP1804T-3002I/OT MCP1804T-3302I/OT MCP1804T-5002I/OT MCP1804T-A002I/OT MCP1804T-C002I/OT
80K25
3-Lead SOT-89
Part Number MCP1804T-1802I/MB MCP1804T-2502I/MB MCP1804T-3002I/MB MCP1804T-3302I/MB MCP1804T-5002I/MB MCP1804T-A002I/MB MCP1804T-C002I/MB
Code 84KNN 84TNN 84ZNN 852NN 85MNN 879NN 87ZNN
Example:
XXXYYWW NNN
84K25
5-Lead SOT-89
Part Number MCP1804T-1802I/MT MCP1804T-2502I/MT Code 80KNN 80TNN 80ZNN 812NN 81MNN 839NN 83ZNN
Example:
XXXYYWW NNN
MCP1804T-3002I/MT MCP1804T-3302I/MT MCP1804T-5002I/MT MCP1804T-A002I/MT MCP1804T-C002I/MT
80K25
3-Lead SOT-223
Part Number MCP1804T-1802I/DB MCP1804T-2502I/DB MCP1804T-3002I/DB MCP1804T-3302I/DB MCP1804T-5002I/DB MCP1804T-A002I/DB MCP1804T-C002I/DB Code 84KNN 84TNN 84ZNN 852NN 85MNN 879NN 87ZNN
Example:
XXXXXXX XXXYYWW NNN
84K25
Legend: XX...X Y YY WW NNN e3 * Note:
Customer-specific information Year code (last digit of calendar year) Year code (last 2 digits of calendar year) Week code (week of January 1 is week `01') Alphanumeric traceability code Pb-free JEDEC designator for Matte Tin (Sn) This package is Pb-free. The Pb-free JEDEC designator ( e3 ) can be found on the outer packaging for this package.
In the event the full Microchip part number cannot be marked on one line, it will be carried over to the next line, thus limiting the number of available characters for customer-specific information.
(c) 2009 Microchip Technology Inc.
DS22200A-page 27
MCP1804
/HDG 3ODVWLF 6PDOO 2XWOLQH 7UDQVLVWRU 27 >627
1RWH
@
)RU WKH PRVW FXUUHQW SDFNDJH GUDZLQJV SOHDVH VHH WKH 0LFURFKLS 3DFNDJLQJ 6SHFLILFDWLRQ ORFDWHG DW KWWS ZZZ PLFURFKLS FRP SDFNDJLQJ
b
N
E E1
1 e
2
3
e1 D
A
A2
c
A1
L L1
8QLWV 'LPHQVLRQ /LPLWV 1XPEHU RI 3LQV /HDG 3LWFK 2XWVLGH /HDG 3LWFK 2YHUDOO +HLJKW 0ROGHG 3DFNDJH 7KLFNQHVV 6WDQGRII 2YHUDOO :LGWK 0ROGHG 3DFNDJH :LGWK 2YHUDOO /HQJWK )RRW /HQJWK )RRWSULQW )RRW $QJOH /HDG 7KLFNQHVV 1 H H $ $ $ ( ( ' / / I F %6& %6& 0,1 0,//,0(7(56 120 0$;
/HDG :LGWK E 1RWHV 'LPHQVLRQV ' DQG ( GR QRW LQFOXGH PROG IODVK RU SURWUXVLRQV 0ROG IODVK RU SURWUXVLRQV VKDOO QRW H[FHHG 'LPHQVLRQLQJ DQG WROHUDQFLQJ SHU $60( < 0 %6& %DVLF 'LPHQVLRQ 7KHRUHWLFDOO\ H[DFW YDOXH VKRZQ ZLWKRXW WROHUDQFHV
PP SHU VLGH
0LFURFKLS 7HFKQRORJ\ 'UDZLQJ &
%
DS22200A-page 28
(c) 2009 Microchip Technology Inc.
MCP1804
/HDG 3ODVWLF 6PDOO 2XWOLQH 7UDQVLVWRU +HDGHU 0% >627
1RWH
@
)RU WKH PRVW FXUUHQW SDFNDJH GUDZLQJV SOHDVH VHH WKH 0LFURFKLS 3DFNDJLQJ 6SHFLILFDWLRQ ORFDWHG DW KWWS ZZZ PLFURFKLS FRP SDFNDJLQJ
D D1
E H
L
1 b1
2 b e e1
N b1 E1
A C
8QLWV 'LPHQVLRQ /LPLWV 1XPEHU RI /HDGV 3LWFK 2XWVLGH /HDG 3LWFK 2YHUDOO +HLJKW 2YHUDOO :LGWK 0ROGHG 3DFNDJH :LGWK DW %DVH 0ROGHG 3DFNDJH :LGWK DW 7RS 2YHUDOO /HQJWK 7DE /HQJWK )RRW /HQJWK /HDG 7KLFNQHVV /HDG :LGWK 1 H H $ + ( ( ' ' / F E %6& %6& 0,//,0(7(56 0,1 0$;
/HDGV :LGWK E 1RWHV 'LPHQVLRQV ' DQG ( GR QRW LQFOXGH PROG IODVK RU SURWUXVLRQV 0ROG IODVK RU SURWUXVLRQV VKDOO QRW H[FHHG 'LPHQVLRQLQJ DQG WROHUDQFLQJ SHU $60( < 0 %6& %DVLF 'LPHQVLRQ 7KHRUHWLFDOO\ H[DFW YDOXH VKRZQ ZLWKRXW WROHUDQFHV
PP SHU VLGH
0LFURFKLS 7HFKQRORJ\ 'UDZLQJ &
%
(c) 2009 Microchip Technology Inc.
DS22200A-page 29
MCP1804
/HDG 3ODVWLF 6PDOO 2XWOLQH 7UDQVLVWRU +HDGHU 07 >627
1RWH
@
)RU WKH PRVW FXUUHQW SDFNDJH GUDZLQJV SOHDVH VHH WKH 0LFURFKLS 3DFNDJLQJ 6SHFLILFDWLRQ ORFDWHG DW KWWS ZZZ PLFURFKLS FRP SDFNDJLQJ
D1 b2 b1 N b1
L
L
1
2 b b1 e1 D H E
b1
e
A C
8QLWV 'LPHQVLRQ /LPLWV 1XPEHU RI /HDGV /HDG 3LWFK 2XWVLGH /HDG 3LWFK 2YHUDOO +HLJKW 2YHUDOO :LGWK 0ROGHG 3DFNDJH :LGWK 2YHUDOO /HQJWK 7DE :LGWK )RRW /HQJWK /HDG 7KLFNQHVV /HDG /HDGV 7DE /HDG :LGWK :LGWK :LGWK 1 H H $ + ( ' ' / F E E E
0,//,0(7(56 0,1 0$; %6& %6&
1RWHV 'LPHQVLRQV ' DQG ( GR QRW LQFOXGH PROG IODVK RU SURWUXVLRQV 0ROG IODVK RU SURWUXVLRQV VKDOO QRW H[FHHG 'LPHQVLRQLQJ DQG WROHUDQFLQJ SHU $60( < 0 %6& %DVLF 'LPHQVLRQ 7KHRUHWLFDOO\ H[DFW YDOXH VKRZQ ZLWKRXW WROHUDQFHV
PP SHU VLGH
0LFURFKLS 7HFKQRORJ\ 'UDZLQJ &
%
DS22200A-page 30
(c) 2009 Microchip Technology Inc.
MCP1804
/HDG 3ODVWLF 6PDOO 2XWOLQH 7UDQVLVWRU '% >627
1RWH
@
)RU WKH PRVW FXUUHQW SDFNDJH GUDZLQJV SOHDVH VHH WKH 0LFURFKLS 3DFNDJLQJ 6SHFLILFDWLRQ ORFDWHG DW KWWS ZZZ PLFURFKLS FRP SDFNDJLQJ
D b2
E1
E
1
2
3
e e1
A b
A2
L
c
A1
8QLWV 'LPHQVLRQ /LPLWV 1XPEHU RI /HDGV /HDG 3LWFK 2XWVLGH /HDG 3LWFK 2YHUDOO +HLJKW 6WDQGRII 0ROGHG 3DFNDJH +HLJKW 2YHUDOO :LGWK 0ROGHG 3DFNDJH :LGWK 2YHUDOO /HQJWK /HDG 7KLFNQHVV /HDG :LGWK 7DE /HDG :LGWK )RRW /HQJWK /HDG $QJOH 1 H H $ $ $ ( ( ' F E E / I 0,1
0,//,0(7(56 120 %6& %6& 0$;

1RWHV 'LPHQVLRQV ' DQG ( GR QRW LQFOXGH PROG IODVK RU SURWUXVLRQV 0ROG IODVK RU SURWUXVLRQV VKDOO QRW H[FHHG 'LPHQVLRQLQJ DQG WROHUDQFLQJ SHU $60( < 0 %6& %DVLF 'LPHQVLRQ 7KHRUHWLFDOO\ H[DFW YDOXH VKRZQ ZLWKRXW WROHUDQFHV
PP SHU VLGH
0LFURFKLS 7HFKQRORJ\ 'UDZLQJ &
%
(c) 2009 Microchip Technology Inc.
DS22200A-page 31
MCP1804
/HDG 3ODVWLF 6PDOO 2XWOLQH 7UDQVLVWRU '% >627
1RWH
@
)RU WKH PRVW FXUUHQW SDFNDJH GUDZLQJV SOHDVH VHH WKH 0LFURFKLS 3DFNDJLQJ 6SHFLILFDWLRQ ORFDWHG DW KWWS ZZZ PLFURFKLS FRP SDFNDJLQJ
DS22200A-page 32
(c) 2009 Microchip Technology Inc.
MCP1804
APPENDIX A: REVISION HISTORY
Revision A (September 2009)
* Original Release of this Document.
(c) 2009 Microchip Technology Inc.
DS22200A-page 31
MCP1804
NOTES:
DS22200A-page 32
(c) 2009 Microchip Technology Inc.
MCP1804
PRODUCT IDENTIFICATION SYSTEM
To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office. PART NO. Device T Tape and Reel -XX Voltage XX Output Voltage Tolerance X Temperature Range /XX Package
Examples:
a) b) c) d) e) f) g) MCP1804T-1802I/OT: MCP1804T-2502I/OT: MCP1804T-3002I/OT: MCP1804T-3302I/OT: MCP1804T-5002I/OT: MCP1804T-A002I/OT: MCP1804T-C002I/OT: 1.8V, 5-LD SOT-23 2.5V, 5-LD SOT-23 3.0V, 5-LD SOT-23 3.3V, 5-LD SOT-23 5.0V, 5-LD SOT-23 10V, 5-LD SOT-23 12V, 5-LD SOT-23
Device
MCP1804T:
LDO Voltage Regulator (Tape and Reel)
Voltage Options
18 25 30 33 50 A0 C0
= = = = = = =
1.8V 2.5V 3.0V 3.3V 5.0V 10V 12V
a) b) c) d) e) f) g)
MCP1804T-1802I/MB: MCP1804T-2502I/MB: MCP1804T-3002I/MB: MCP1804T-3302I/MB: MCP1804T-5002I/MB: MCP1804T-A002I/MB: MCP1804T-C002I/MB:
1.8V, 5-LD SOT-89 2.5V, 5-LD SOT-89 3.0V, 5-LD SOT-89 3.3V, 5-LD SOT-89 5.0V, 5-LD SOT-89 10V, 5-LD SOT-89 12V, 5-LD SOT-89
Output Voltage Tolerance
02 = 2% a) b) c) d) e) f) g) MCP1804T-1802I/MT: MCP1804T-2502I/MT: MCP1804T-3002I/MT: MCP1804T-3302I/MT: MCP1804T-5002I/MT: MCP1804T-A002I/MT: MCP1804T-C002I/MT: 1.8V, 5-LD SOT-89 2.5V, 5-LD SOT-89 3.0V, 5-LD SOT-89 3.3V, 5-LD SOT-89 5.0V, 5-LD SOT-89 10V, 5-LD SOT-89 12V, 5-LD SOT-89
Temperature Range
I
= -40C to +85C (Industrial)
Package
DB MB MT OT
= = = =
3-lead Plastic Small OutlineTransistor (SOT-223) 3-lead Plastic Small OutlineTransistor (SOT-89) 5-lead Plastic Small OutlineTransistor (SOT-89) 5-lead Plastic Small OutlineTransistor (SOT-23)
a) b) c) d) e) f) g)
MCP1804T-1802I/DB: MCP1804T-2502I/DB: MCP1804T-3002I/DB: MCP1804T-3302I/DB: MCP1804T-5002I/DB: MCP1804T-A002I/DB: MCP1804T-C002I/DB:
1.8V, 3-LD SOT-223 2.5V, 3-LD SOT-223 3.0V, 3-LD SOT-223 3.3V, 3-LD SOT-223 5.0V, 3-LD SOT-223 10V, 3-LD SOT-223 12V, 3-LD SOT-223
(c) 2009 Microchip Technology Inc.
DS22200A-page 33
MCP1804
NOTES:
DS22200A-page 34
(c) 2009 Microchip Technology Inc.
Note the following details of the code protection feature on Microchip devices: * * Microchip products meet the specification contained in their particular Microchip Data Sheet. Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions. There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property. Microchip is willing to work with the customer who is concerned about the integrity of their code. Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."
*
* *
Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.
Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights.
Trademarks The Microchip name and logo, the Microchip logo, dsPIC, KEELOQ, KEELOQ logo, MPLAB, PIC, PICmicro, PICSTART, rfPIC and UNI/O are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries. FilterLab, Hampshire, HI-TECH C, Linear Active Thermistor, MXDEV, MXLAB, SEEVAL and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A. Analog-for-the-Digital Age, Application Maestro, CodeGuard, dsPICDEM, dsPICDEM.net, dsPICworks, dsSPEAK, ECAN, ECONOMONITOR, FanSense, HI-TIDE, In-Circuit Serial Programming, ICSP, Mindi, MiWi, MPASM, MPLAB Certified logo, MPLIB, MPLINK, mTouch, Octopus, Omniscient Code Generation, PICC, PICC-18, PICDEM, PICDEM.net, PICkit, PICtail, PIC32 logo, REAL ICE, rfLAB, Select Mode, Total Endurance, TSHARC, UniWinDriver, WiperLock and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries. SQTP is a service mark of Microchip Technology Incorporated in the U.S.A. All other trademarks mentioned herein are property of their respective companies. (c) 2009, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved. Printed on recycled paper.
Microchip received ISO/TS-16949:2002 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company's quality system processes and procedures are for its PIC(R) MCUs and dsPIC(R) DSCs, KEELOQ(R) code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and manufacture of development systems is ISO 9001:2000 certified.
(c) 2009 Microchip Technology Inc.
DS22200A-page 35
WORLDWIDE SALES AND SERVICE
AMERICAS
Corporate Office 2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200 Fax: 480-792-7277 Technical Support: http://support.microchip.com Web Address: www.microchip.com Atlanta Duluth, GA Tel: 678-957-9614 Fax: 678-957-1455 Boston Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088 Chicago Itasca, IL Tel: 630-285-0071 Fax: 630-285-0075 Cleveland Independence, OH Tel: 216-447-0464 Fax: 216-447-0643 Dallas Addison, TX Tel: 972-818-7423 Fax: 972-818-2924 Detroit Farmington Hills, MI Tel: 248-538-2250 Fax: 248-538-2260 Kokomo Kokomo, IN Tel: 765-864-8360 Fax: 765-864-8387 Los Angeles Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608 Santa Clara Santa Clara, CA Tel: 408-961-6444 Fax: 408-961-6445 Toronto Mississauga, Ontario, Canada Tel: 905-673-0699 Fax: 905-673-6509
ASIA/PACIFIC
Asia Pacific Office Suites 3707-14, 37th Floor Tower 6, The Gateway Harbour City, Kowloon Hong Kong Tel: 852-2401-1200 Fax: 852-2401-3431 Australia - Sydney Tel: 61-2-9868-6733 Fax: 61-2-9868-6755 China - Beijing Tel: 86-10-8528-2100 Fax: 86-10-8528-2104 China - Chengdu Tel: 86-28-8665-5511 Fax: 86-28-8665-7889 China - Hong Kong SAR Tel: 852-2401-1200 Fax: 852-2401-3431 China - Nanjing Tel: 86-25-8473-2460 Fax: 86-25-8473-2470 China - Qingdao Tel: 86-532-8502-7355 Fax: 86-532-8502-7205 China - Shanghai Tel: 86-21-5407-5533 Fax: 86-21-5407-5066 China - Shenyang Tel: 86-24-2334-2829 Fax: 86-24-2334-2393 China - Shenzhen Tel: 86-755-8203-2660 Fax: 86-755-8203-1760 China - Wuhan Tel: 86-27-5980-5300 Fax: 86-27-5980-5118 China - Xiamen Tel: 86-592-2388138 Fax: 86-592-2388130 China - Xian Tel: 86-29-8833-7252 Fax: 86-29-8833-7256 China - Zhuhai Tel: 86-756-3210040 Fax: 86-756-3210049
ASIA/PACIFIC
India - Bangalore Tel: 91-80-3090-4444 Fax: 91-80-3090-4080 India - New Delhi Tel: 91-11-4160-8631 Fax: 91-11-4160-8632 India - Pune Tel: 91-20-2566-1512 Fax: 91-20-2566-1513 Japan - Yokohama Tel: 81-45-471- 6166 Fax: 81-45-471-6122 Korea - Daegu Tel: 82-53-744-4301 Fax: 82-53-744-4302 Korea - Seoul Tel: 82-2-554-7200 Fax: 82-2-558-5932 or 82-2-558-5934 Malaysia - Kuala Lumpur Tel: 60-3-6201-9857 Fax: 60-3-6201-9859 Malaysia - Penang Tel: 60-4-227-8870 Fax: 60-4-227-4068 Philippines - Manila Tel: 63-2-634-9065 Fax: 63-2-634-9069 Singapore Tel: 65-6334-8870 Fax: 65-6334-8850 Taiwan - Hsin Chu Tel: 886-3-6578-300 Fax: 886-3-6578-370 Taiwan - Kaohsiung Tel: 886-7-536-4818 Fax: 886-7-536-4803 Taiwan - Taipei Tel: 886-2-2500-6610 Fax: 886-2-2508-0102 Thailand - Bangkok Tel: 66-2-694-1351 Fax: 66-2-694-1350
EUROPE
Austria - Wels Tel: 43-7242-2244-39 Fax: 43-7242-2244-393 Denmark - Copenhagen Tel: 45-4450-2828 Fax: 45-4485-2829 France - Paris Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79 Germany - Munich Tel: 49-89-627-144-0 Fax: 49-89-627-144-44 Italy - Milan Tel: 39-0331-742611 Fax: 39-0331-466781 Netherlands - Drunen Tel: 31-416-690399 Fax: 31-416-690340 Spain - Madrid Tel: 34-91-708-08-90 Fax: 34-91-708-08-91 UK - Wokingham Tel: 44-118-921-5869 Fax: 44-118-921-5820
03/26/09
DS22200A-page 36
(c) 2009 Microchip Technology Inc.


▲Up To Search▲   

 
Price & Availability of MCP1804

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X